Outlier detection using neighborhood rank difference
نویسندگان
چکیده
Presence of outliers critically affects many pattern classification tasks. In this paper, we propose a novel dynamic outlier detection method based on neighborhood rank difference. In particular, reverse and the forward nearest neighbor rank difference is employed to capture the variations in densities of a test point with respect to various training points. In the first step of our method, we determine the influence space for a given dataset. A score for outlierness is proposed in the second step using the rank difference as well as the absolute density within this influence space. Experiments on synthetic and some UCI machine learning repository datasets clearly indicate the supremacy of our method over some recently published approaches. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Rank-Based Outlier Detection
We propose a new approach for outlier detection, based on a new ranking measure that focuses on the question of whether a point is “important” for its nearest neighbors; using our notations low cumulative rank implies the point is central. For instance, a point centrally located in a cluster has relatively low cumulative sum of ranks because it is among the nearest neighbors of its own nearest ...
متن کاملAlgorithms for Spatial Outlier Detection
A spatial outlier is a spatially referenced object whose non-spatial attribute values are significantly different from the values of its neighborhood. Identification of spatial outliers can lead to the discovery of unexpected, interesting, and useful spatial patterns for further analysis. One drawback of existing methods is that normal objects tend to be falsely detected as spatial outliers whe...
متن کاملSmall Moving Targets Detection Using Outlier Detection Algorithms
Recent research in motion detection has shown that various outlier detection methods could be used for efficient detection of small moving targets. These algorithms detect moving objects as outliers in a properly defined attribute space, where outlier is defined as an object distinct from the objects in its neighborhood. In this paper, we compare the performance of two incremental outlier detec...
متن کاملCell-DROS: A Fast Outlier Detection Method for Big Datasets
Outlier detection is one of the obstacles of big dataset analysis because of its time consumption issues. This paper proposes a fast outlier detection method for big datasets, which is a combination of cell-based algorithms and a ranking-based algorithm with various depths. A cell-based algorithm is proposed to transform a very large dataset to a fairly small set of weighted cells based on pred...
متن کاملDistance-based adaptive k-neighborhood selection
The k-nearest neighbor classifier follows a simple, yet powerful algorithm: collect the k data points closest to an unlabeled instance, according to a given distance measure, and use them to predict that instance’s label. The two components, the parameter k governing the size of used neighborhood, and the distance measure, essentially determine success or failure of the classifier. In this work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 60-61 شماره
صفحات -
تاریخ انتشار 2015